Multistakeholder Recommendation

Part 1

Objectives

- You should come away from this part of the session
 - Knowing what multistakeholder recommendation is
 - Being able to identify multistakeholder issues that might arise in an application
 - Understanding a range of approaches for implementing and evaluating MSR

Who am I

- Recommender systems researcher since the mid-90s (before "recommender systems" was the accepted term)
- Currently: Professor in the Department of Information Science, University of Colorado, Boulder
 - Director of That Recommender Systems Lab (that-recsys-lab.net)
- Formerly: DePaul University in Chicago (2002-2018)
 - ► Co-led the Web Intelligence Lab with Bamshad Mobasher
- Current chair of the Steering Committee for the RecSys conference
- Organizing the Recommendation in Multistakeholder Environments worksh (RMSE 2019)
 - next week

We are looking for new PhD students!

There's also a diversityfocused post-doc at CU Boulder

Raise your hand if

- Have prior exposure to the concept of multistakeholder recommendation?
- Have prior exposure to the concept of fairness-aware recommendation?
- Have used a multistakeholder recommender system?
- Have used the Amazon.com web site?
- Have used Facebook?

Outline of these sessions

- Session I: Multistakeholder recommendation
 - Definitions
 - Challenges
 - Evaluation
 - Algorithms
- Session II: Fairness-aware recommendation
 - Definitions
 - Challenges
 - Evaluation
 - Algorithms

Stakeholder (definition)

- Comes from the literature on business management
 - A stakeholder in an organization is (by definition) any group or individual who can affect or is affected by the achievement of the organization's objectives.
 - ▶ (Freeman, 2010)
- ► For recommender systems, my definition
 - A recommendation stakeholder is any group or individual who can affected or is affected by the delivery of recommendations to users.
- Normally in recommender systems research
 - We consider only the user as a stakeholder
 - Optimize recommendations for "user satisfaction"

Multistakeholder recommendation environment

- An environment / application where the requirements for recommendation generation
 - Include the perspectives of multiple parties
 - ▶ Not just the user
 - Example: computational advertising
 - ► User wants might respond to ads meeting their interests
 - ► Advertisers want users within an audience segment
 - Publishers want to maximize ad revenues

Isn't this bad?

- "Recommendation should be all about the user"
- Two answers
 - This is already the case in many e-commerce settings
 - ► Filter out products that are out-of-stock
 - Optimize for time on site (do users really want that?)
 - Promote "house brands"
 - Promote new sellers / new items to overcome cold-start
 - Explore-exploit
 - Better to be transparent about the considerations
 - Without recognition of the multistakeholder nature of business
 - ▶ We can get into trouble: unfairness, bias, filter bubbles
 - ▶ Why not make these constraints explicit in our systems
 - Not something tacked on after the fact

Business Roundtable

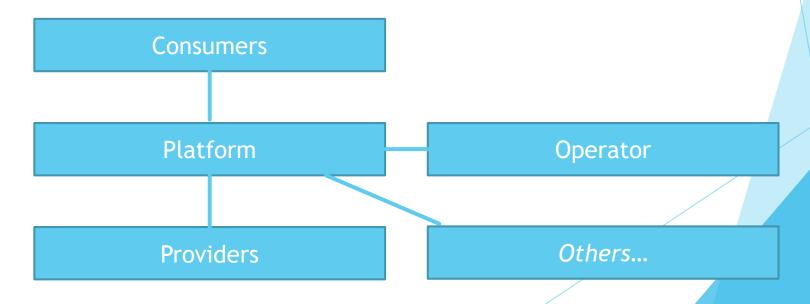
- Recent report from the US Business Roundtable organization re-defining the role of a corporation:
- While each of our individual companies serves its own corporate purpose, we share a fundamental commitment to **all of our stakeholders**. We commit to:
 - Delivering value to our customers...
 - Investing in our employees...
 - Dealing fairly and ethically with our suppliers...
 - Supporting the communities in which we work...
 - Generating long-term value for shareholders...
- Each of our stakeholders is essential. We commit to deliver value to all of them, for the future success of our companies, our communities and our country."
- Signed by 180 CEOs
 - Including Amazon, Apple, Oracle, SAP, etc.

Multistakeholder recommendation

- A multistakeholder recommender system is one in which the objectives of multiple parties, in addition to objectives attributed to the user, are considered in the computation of recommendations,
 - Especially a system in which such parties lie on different sides of the recommendation interaction.

Multisided platforms (MSPs)

- Especially a system in which such parties lie on different sides of the recommendation interaction.
- "Multisided platforms are technologies, products or services that create value primarily by enabling direct interactions between two or more customer or participant groups." (Hagiu, 2014)



What questions so far?

Example

- Out of school time activities
- Wide range of options
 - entire summer
 - regular after-school
 - one-time events
- Wide range of providers
 - schools
 - non-profits
 - museums
 - > sports clubs
- Audience: teens

Exercise

- Form groups of three or four
- Consider a system that recommends such activities
- List stakeholder groups
 - ▶ 15 minutes
- Be prepared to discuss your stakeholder groups

Possible confusion

- Isn't it just the system designer / owner?
- People who are building the system decide what objectives to optimize
 - aren't they the only stakeholders?
- The idea of a stakeholder is about impact, not about control

Distinction

Evaluation

- A recommender system implementer can apply a metric that evaluates the impact of its recommendations on different stakeholders
- ▶ To understand how different stakeholders are affected

Optimization

- An implementer can incorporate objectives related to different stakeholders as part of system optimization
- Tuning the system to achieve particular stakeholder impact

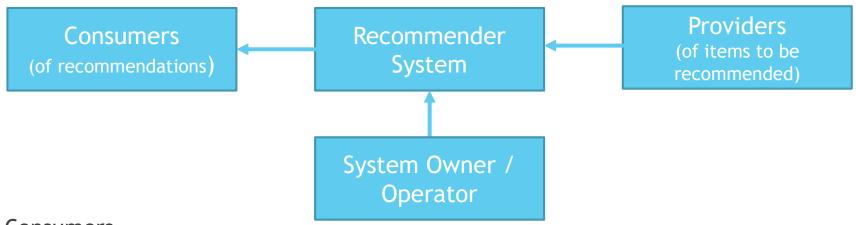
Involvement

An implementer can incorporate multiple stakeholders in the design of the system itself and the tradeoffs between different objectives

Related areas

- Group recommendation
 - ▶ Long history in recommender systems
 - Multiple parties receive the same recommendation
- Multistakeholder analysis of businesses
- Multisided platforms
- Matching markets
 - Reciprocal recommendation
- Computational advertising
- Non-accuracy methods in recommendation
 - long-tail
 - diversity

Key stakeholders



- Consumers
 - Individuals who get recommendations
- Providers
 - ▶ Entities who supply items that the system recommends
 - > could be multiple parties on this side, depending on type of item
- System
 - ▶ Entity that operates the recommender system
- May also be "side stakeholders"
 - **Example:** different delivery services for items

Provider considerations

- Entities whose items are being recommended
 - maybe this is the system itself, not often not
- Types of objectives
 - Neutral: no related objective
 - We don't care how providers fare
 - Personalized: specific objectives for providers
 - ▶ Who are the "good" consumers?
- Types of interactions
 - Passive interaction: implicit feedback
 - Who does the provider accept?
 - Active interaction: provider specifies
 - Who does the provider want?

Examples

- AirBnB hosts
 - ▶ A host can decide whether or not to accept a potential guest
 - ▶ The system could learn from that as part of matching with users
 - passive
- On-line dating
 - The user specifies the type of match they are seeking
 - ► The system uses this information to match with users
 - active

Consumer considerations

- Objective will be personalized
 - otherwise not really a recommender system
 - "popular items"
- Types of interactions
 - Passive
 - "Welcome back! Here are some recommendations"
 - Active
 - User specifies a context, query or other information
 - ▶ Recommendations tailored to the input
 - **Example:**
 - > search for Spanish restaurants, but the list is ordered in a personalized manner

Aside: interaction semantics

- Technical distinction between recommendation and personalized search
 - not much
 - many fielded systems have both characteristics
- Difference largely in user's mental model
 - what does the user think they are getting
 - answers to a question
 - suggestions based on history
- Much of this discussion applies regardless

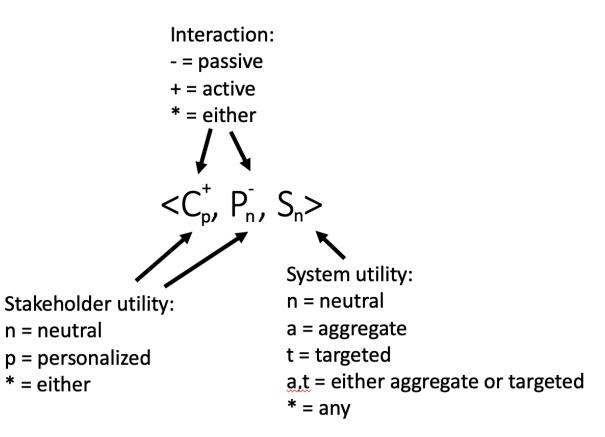
System

- ► How does the system gain from recommendation interactions?
 - and does that depend on specific interactions?
- Neutral
 - the system doesn't care what is recommended and to whom as long as users are satisfied
 - Think MovieLens
- Aggregate
 - the system specifically gains from recommendations in some aggregate way
 - for example, a commission on sales
- Targeted
 - the system has its own objectives about what is recommended and to whom
 - ▶ and those objectives might not be shared by other participants
 - Example: fairness (more later)

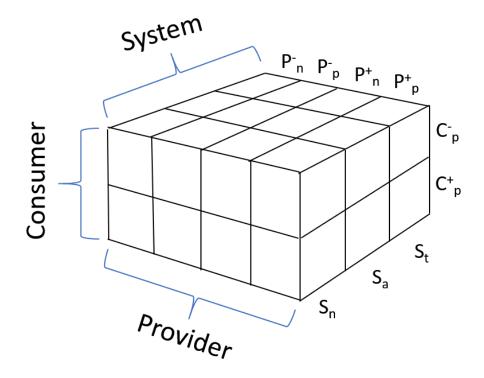
Some notation

n = neutral

* = either



Design space



Examples

- On-line dating (reciprocal recommendation)
 - $ightharpoonup < C_p^+, P_p^+, S_n^- >$
- Display advertising
 - $> < C_p^-, P_p^+, S_a^->$
- Social network recommendation (ala Daley et al. 2010)
 - $> < C_p, P_p, S_t >$

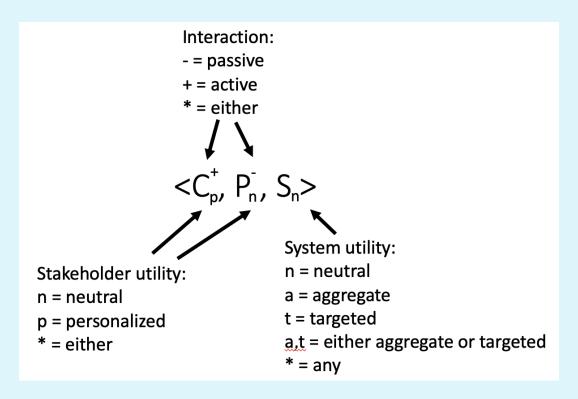
The point

- ► There are a lot of different multistakeholder configurations
 - ▶ Not all solutions are applicable to every configuration
- Example
 - If you can model system utility as an aggregate of provider utility
 - via commission, for example
 - Then you don't have to worry about separate system objectives

What questions so far?

Exercise

- Consider the configuration
- $ightharpoonup < C_p^+, P_n^-, S_t^>$
- ► How does this map to the out-of-school activity recommender?
- Discuss



Implementations

- Multi-criteria optimization methods
- Re-ranking
- Note
 - Implementations often similar to techniques used for other non-accuracy metrics
 - diversity, coverage, etc.

Multi-criteria methods

- Combined optimization objective
 - Example: loss = α obj1 + (1 α) obj2
- Sequential optimization
 - $ightharpoonup S_1 = opt(obj1)$
 - \triangleright S₂ = opt(obj2) but bound loss on obj1 (1% for example)

Combined objective

- Many examples
 - Recent one
 - ▶ Mehrotra et al. "Towards a Fair Marketplace", CIKM 2018
- Application: Playlist recommendation in Spotify
 - Stakeholders are users, artists
 - Users want accuracy recommendations
 - Artists want to be recommended

"Fair Marketplace", cont'd

- Algorithm: contextual bandit
 - learns to maximize reward $s_u^* = argmax_{s \in S_u} ((1 \beta) \phi(u, s) + \beta \psi(s))$
 - lacktriangle where ϕ is the relevance and ψ is the fairness
 - \triangleright β controls the tradeoff

Regularization

- A combined objective
 - where the non-accuracy multistakeholder objective is treated as a regularization over the accuracy objective
 - ▶ We'll see an example when we talk about fairness

Sequential optimization

- Derive a solution for the accuracy objective
 - ▶ then solve for a second objective constraining the loss on the first
- Example
 - Agarwal, et al. "Click shaping to optimize multiple objectives", KDD 2011
- Application: content for the Yahoo! Front Page
 - Two different KPIs
 - click-through rate
 - time on site (stickiness)
 - These are both about the user (maybe?)
 - However, paper discusses other system stakeholder objectives such as site revenue

"Click shaping"

- Algorithm: Bayesian estimation of CTR
 - followed by constrained optimization of the time-spent metric
 - using linear programming

Multi-criteria methods

- Requires resolving some tricky tuning issues
- Combined objectives
 - require setting a weight on the outcomes for different stakeholders
- Regularization
 - distorts the optimization space, can cause significant accuracy loss
- Sequential optimization
 - have to decide what is an appropriate average accuracy loss
 - distributional control might be better

Re-ranking

- Produce recommendation lists in the usual way
 - optimized for user stakeholders
- Then re-rank to balance original ranking vs other stakeholders' objectives
- Example
 - Sürer, Özge, Robin Burke, and Edward C. Malthouse. "Multistakeholder recommendation with provider constraints". RecSys 2018.
- Application: Recommendation in a multi-supplier marketplace
 - User stakeholders
 - Suppliers want a share of recommendations delivered

"Multi-supplier"

- Algorithm: agnostic to initial algorithm
 - user-based algorithm computes all recommendation lists for all users
 - define desired optimal provider exposure as an integer programming problem
 - use a Lagraingian relaxation of IP to achieve scalability

Provider-side metrics

- Lots of literature on measuring outcomes for users
- How do we measure outcomes for provider?
 - application-specific
 - what matters to these folks?
- Several ideas
 - exposure: people see their products / items
 - audience: who sees their items
 - quality: prediction outcomes

Exposure

- Count the number of recommendations of the provider's items across some set of recommendation lists
 - doesn't matter whether the user is interested

$$\sum_{L_i \in \mathcal{L}} \sum_{j \in L_i} \mathbb{1}(j \in I_p)$$

- Count the number of Hits (that is recommendations matching the test data)
 - doesn't work so well for cold-start providers

$$\sum_{L_i \in \mathcal{L}} \sum_{j \in L_i} \mathbb{1}(j \in I_p \land r_{ij} \in T)$$

- Could normalize by
 - the number of lists
 - the size of provider's catalog
- Can also take rank into account

Audience

- Count how many users are reached by the provider's items; they see at least one item $\sum_{L_i \in \mathcal{L}} \mathbb{1}(|I_p \cap L_i| > 0)$
 - Quality of match not included
- Count how many users in some targeted group g see the recommendations

$$\sum_{L_i \in \mathcal{L}} \mathbb{1}(|I_p \cap L_i| > 0 \land g_p(i))$$

- **Variants**
 - Use hits instead of just counts

Accuracy

- How accurate are the recommendations of the provider's items when they are given
 - Could use any metric: RMSE, nDCG, etc.

$$\left[\sum_{r_{ij}\in T_p} m(r_{ij}, \hat{r}_{ij})\right]/|T_p|$$

Might be deceptive if $|T_p|$ is small

What questions so far?

Exercise

- ▶ Think back to our recommender for out of school activities
- What metric(s) would be appropriate for providers?
- If you think multiple metrics are appropriate,
 - how should tradeoffs between them be managed?

Conclusion

- Multistakeholder recommendation
 - the objectives of multiple parties are considered in making recommendations,
 - when the parties lie on different sides of the recommendation interaction.
- Multistakeholder recommendation is a necessity in many applications
 - It is not "bad" to incorporate the stakeholders other than the user
 - If a system has benefits for users, system viability is in their interest
- Multistakeholder recommendation approaches
 - Multi-criteria optimization
 - incl. regularization
 - Re-ranking

Open questions

- Transparency
 - ► How to surface / explain multistakeholder aspects of recommendation?
 - Esp. to consumers who might resist such aspects
- Tradeoffs
 - ► How to define and evaluate tradeoffs?
- Multistakeholder UX
 - ▶ How do different stakeholders interact with the system?

References

- Agarwal, et al. Click shaping to optimize multiple objectives. KDD 2011
- Business Roundtable, Statement on the Purpose of a Corporation. https://opportunity.businessroundtable.org/wp-content/uploads/2019/08/BRT-Statement-on-the-Purpose-of-a-Corporation-with-Signatures.pdf, August 2019
- Daly, E., Werner Geyer, and David R. Millen. The network effects of recommending social connections. RecSys 2010.
- Freeman, R. E. Strategic management: A stakeholder approach. Cambridge university press, 2010.
- Hagiu, A. Strategic decisions for multisided platforms. MIT, 2014.
- Mehrotra et al. Towards a Fair Marketplace: Counterfactual Evaluation of the trade-off between Relevance, Fairness & Satisfaction in Recommendation Systems. CIKM 2018
- Sürer, Ö et al. Multistakeholder recommendation with provider constraints. RecSys 2018.

Break